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Abstract It is now recognized that the performance of an individual in a group de-
pends not only on her own skills but also on her relationship with other members of
the group. It may be possible to exploit such synergies by explicitly taking into ac-
count social network topology. We analyze team-formation in the context of a large
organization that wants to form multiple teams composed of its members. Such or-
ganizations could range from intelligence services with many analysts to consulting
companies with many consultants, all having different expertise. The organization
must divide its members into teams, with each team having a specified list of in-
terrelated tasks to complete, each of which is associated with a different reward.
We characterize the skill level of a member for a particular task type by her prob-
ability of successfully completing that task. Members who are connected to each
other in the social network provide a positive externality: they can help each other
out on related tasks, boosting success probabilities. We propose a greedy approxi-
mation for the problem of allocating interrelated tasks to teams of members while
taking social network structure into account. We demonstrate that the approxima-
tion is close to optimal on problems where the optimal allocation can be explicitly
computed, and that it provides significant benefits over the optimal allocation that
does not take the network structure into account in large networks. We also discuss
the types of networks for which the social structure provides the greatest boost to
overall performance.
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1.1 Introduction

Good team-formation is one of the keys to success of any organization. Many re-
searchers emphasize that the performance of an individual in a group depends not
only on her skills but also on her relationships with other members of the group
[3, 6]. Relationships between team members do not necessarily have to be friendship
relations. The important question is whether members work together synergistically
– how compatible they are in collaborative environments (in fact, there is empirical
evidence, at least among MBA students, that friendship within teammates is nega-
tively correlated with performance [1]). Increasingly, organizations are attempting
to optimize team composition, for example by taking personality types into account
when forming teams to work on tasks [3].

We are interested in the problem of optimal allocation of members to tasks within
an organization, taking into account their network of relationships with others. We
consider a model where there are multiple task types, and each member has a certain
cognitive ability for each task type. Each member is therefore characterized com-
pletely by her ability to perform each of the different types of tasks. The organization
has a set of projects to be performed, each project consisting of a set of tasks of dif-
ferent types. Accordingly, each task is characterized by its value, its type, and the
project to which it belongs. The motivating idea is that the organization is a group
of experts (consultants in a service company, or analysts in an intelligence office).
Each expert has expertise in a particular task type regardless of the project to which
this task belongs. For example an accounting consultant can analyze finances of dif-
ferent companies or transportation system analysts can analyze military movements
in many regions or countries. Experts on different task types may have a synergistic
effect on each others’ performance when they are allocated to the same project by
fruitfully sharing information that could be valuable for different task types.

We consider the problem of optimal allocation of members to tasks in this frame-
work. We introduce a model that captures the elements described above, and then
demonstrate that taking social network structure into account can have significant
benefits in terms of the overall optimality of task allocation. We introduce a greedy
algorithm for the problem of task allocation taking social network structure into
account, and demonstrate experimentally that it is a good approximation to the op-
timal allocation on small graphs. Then, we show that it achieves significant benefits
on large graphs compared with the optimal solution that does not take social network
structure into account. Finally, we use this greedy algorithm to explore the proper-
ties of different kinds of social networks, and find that the most affected graphs are
small world networks, followed by random graph networks, and the least affected
graphs are preferential attachment networks. Our work is related to previous papers
that demonstrate the effect of underlying social graph structure on team performance
[5, 4]. It is perhaps closest to the work of Lappas et al., who also consider the so-
cial graph structure of individuals while forming teams [6]. However, their focus
is different; in their model, agents have binary skills, and each task is focused on
the composition of appropriate skill sets. In contrast, our work focuses on optimal
resource allocation in a utility-theoretic framework.
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1.2 The Model

There are n experts E1, . . .En who work for an organization. The social network
representing synergistic relationships is given by S. Two experts are connected in S
if they boost each others’ performance when they work on the same team assigned
to a particular project.

There are z different task types. Each expert has a different skill level associated
with each of these z task types. The skills of an expert Ei are thus represented by
a vector Si = (si1,si2 . . .siz) where si j is the probability that Ei can complete a task
of type j successfully. This is a general measure; it may include not only technical
skills but also interpersonal or organizational skills. We assume that the manager
responsible for task allocation (M) knows the skills vector for each expert.

Time proceeds in discrete steps and at every T units of time, Manager M allocates
work to the experts for the next T units; we call this period of T units a ‘round’.
Manager M allocates m different projects R1, . . . ,Rm. Each project Ri has q tasks
T 1

1 , . . .T
i

q . The distribution of task types is the same for each project. Each task Ti

of project R j (represented by T j
i ) is associated with a value V j

i which represents
the gains received by the organization for successfully completing the task (this is
a direct measure of utility). Therefore, each available task in the organization is
characterized by three attributes: task type, project to which it belongs, and value.
For convenience, we construct a vector of probabilities of successful completion of
tasks in a given project Rk for each expert Ei, Pk

i : (pk
i1, . . . pk

iq) from Si, the vector of
skills, as defined earlier.

We assume the manager re-allocates each of the q different tasks in all the m
projects at the beginning of each round; therefore, overall there are mq tasks to
be allocated to the n experts. The values of tasks do not remain the same at each
round, so the allocation algorithm has to be run at the beginning of each round. The
tasks are designed such that they can be finished in a round. An expert can only be
assigned one task.
Network Effects: The social network S of experts is known to the manager. This is
not an unrealistic assumption, because while working with these experts, the man-
ager may have acquired this information. There are also certain personality tests,
like Myers-Briggs, Kolbe Conative Index etc., which the manager could conduct to
discover expert types which could be used to build a network based on compati-
bilities between different expert types. Now we specify an explicit model of how
experts can help each other out in performing their tasks.

Let W represent the friendship adjacency matrix created from the social graph S:

Wi j =

{
1 if Ei & E j are friends,
0 otherwise

Let f k
i represent the number of friends of Ei among experts assigned a task of project

Rk. We model the network effect as a boost in the probability that an expert success-
fully completes a task. Let B = 1− e− f k

i denote a coefficient that represents the
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improvement in the performance of an expert resulting from collaborating on a task
with friends; B defines the fraction of the performance gap (1− pk

i j) that is covered
by collaboration. By definition, 0 < B < 1. Then, the boosted probability that expert
i successfully accomplishes task Tj in the project Rk, denoted as pk+

i j is defined as:

pk+
i j =

pk
i j

1−B(1−max(pk
i j,1/2))

(1.1)

so the higher the coefficient B, the greater the boost. The boost is naturally limited
by the factor 1− pk

i j, and we further cap it at covering the gap of 1
2 for lower pk

i j’s.
The denominator of the boosted probability expression is at most min(pk

i j,1/2) so
the boosted probability is less than min(2pk

i j,1).

1.3 Algorithms For Task Allocation

The manager’s goal is to maximize expected utility. Let us define indicator variables
ak

i j as follows:

ak
i j =

{
1 if Ei is allocated task Tj in project Rk

0 otherwise

Allocation Ignoring Network Effects: If there is no network effect then the per-
formance of any task depends on the selected experts’ skill levels. Then the total
expected utility is given by:

U =
n

∑
i=1

q

∑
j=1

m

∑
k=1

ak
i j p

k
i jV

k
j (1.2)

The objective is to find allocation variables ak
i j such that Equation (1.2) is maxi-

mized.
Since the manager knows the skill level of all the experts, this problem reduces

to maximum weight matching in a bipartite graph with experts on one side and tasks
on the other, as shown in Figure 1.1. The weight of the edge between expert Ei and
task T k

j is equal to the expected value if Ei is assigned to task T k
j , i.e., the product

of the probability of successful completion pk
i j and the value associated with that

task V k
j . In our experiments we use the Hungarian algorithm to solve the maximum

weight matching problem and find the optimal allocation.
Note that, even though the manager ignores network effects when deciding on

the task allocation, the effects still come into play in terms of overall performance.
Therefore, when we compare solutions that take network effects into account, we
include the hidden network effect in the utility term after the allocation has been
done without including that term when deciding allocation.
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Fig. 1.1 The left side represents tasks and the right side represents experts. The weight Uk
i j on the

edge between expert Ei and task T k
j is the expected return value if Ei is assigned task T k

j . The
objective is to find the matching such that the total expected return value is maximized. It is easy
to observe that the optimal allocation is the same as the maximum weight matching.

Taking Network Effects Into Account: The total expected utility can be calculated
by updating the success probability in Equation 1.2 to take into account network
effects:

U f =
n

∑
i=1

q

∑
j=1

m

∑
k=1

ak
i j p

k+
i j V k

j (1.3)

We need to assign ak
i j’s such that the total expected utility U f is maximized.

Let Opt = maxak
i j
(U f ) represent the maximum expected utility that can possibly be

achieved. This problem is computationally hard to solve optimally, so we focus on
a greedy approximation algorithm.

A Greedy Approximation: We propose a greedy approximation algorithm that can
be used by the organization for task allocation and works as follows. First, construct
a weighted bipartite graph with experts on one side and tasks on the other (this is
distinct from the graph representing social synergies among experts). As above, the
weight on an edge between expert Ei and task T k

j is equal to the expected return
value if the expert Ei is assigned to task T k

j , i.e., the product of the probability
that expert Ei can finish the task T k

j and the return value associated with task T k
j .

Second, select a link with maximum weight and assign the task on the link to the
corresponding expert. Update the success probabilities of all experts connected to
this one in the graph of social synergies for all tasks that are on project k. Repeat this
process until there are no more tasks or no more experts. The overall complexity of
this algorithm is O(min(n,mq)nmq).
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1.4 Experimental Results

Network Models: We consider three standard network models:

1. Random Graph Network (RGN): We use the G(n, p) Erdos-Renyi model for
random graph generation.

2. Small World Network (SWN): We use the β model of Watts and Strogatz [7].
The network is represented by a tuple (n,k,β ), where n is the number of nodes
in the network, k is the mean degree of each node, and β is a parameter such
that 0 ≤ β ≤ 1 which represents randomness.

3. Preferential Attachment Network (PAN): This network model captures the “rich
get richer” phenomenon. We use the mechanism of Barabasi et al. [2] to gener-
ate these networks.

Testing the Greedy Algorithm: We compare the performance of the greedy al-
gorithm described earlier with respect to the optimal allocation. We know of no
efficient means of computing the optimal allocation when taking network structure
into account. As validation, we consider graphs with a small number of experts, so
that brute-force search is feasible for finding the optimal solution. We consider a
network with 10 experts and two projects, each with five tasks. The average degree
is 2. There is only one task type (equivalently, all experts are equally proficient in
carrying out any task). The probability of success is 0.2 for any expert to success-
fully complete any task. The return value of each task is an i.i.d. sample from a
Gaussian distribution with µ = 1 and σ = 0.05.

The results are shown in Table 1.1. We observe that the greedy approximation
yields close to optimal results. It is interesting to note the variation in performance
with respect to network topology. There is a significant change in the optimal utility
when the underlying network creation model is modified. For example, the order of
optimal utility is SWN > RGN > PAN. This holds even though the average degree is
kept constant across the different types of networks. We also observe that for small
world networks (SWN), the changes in rewiring factor do not affect the optimal
performance achievable; however, there is a slight increase in the performance of
the greedy algorithm as the rewiring probability β decreases. One caveat is that
these are small networks, so the approximation may be worse in larger networks.
Understanding the approximation properties of this algorithm is an interesting open
research question.

This experiment also demonstrates that there is a significant advantage to con-
sidering network effects during team formation. Although, we cannot calculate the
optimal utility for larger networks due to computational costs, if we can show that
the utility attainable using the greedy algorithm is significantly higher than that at-
tained when network effects are not taken into account, this is a lower bound on the
gains that could be achievable. We thus turn our attention to exploring utility differ-
ences between the greedy allocation and the optimal allocation that ignores network
effects in larger networks.
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Network Type (k) β Pr(Success) Utility w/o network Opt Utility Greedy
SWN 2 0.25 0.2 2.75 3.30 3.20
SWN 2 0.10 0.2 2.76 3.30 3.24
SWN 2 0.00 0.2 2.77 3.29 3.29
PAN 2 - 0.2 2.64 3.06 2.72
RGN 2 - 0.2 2.66 3.11 2.98
RGN 2 - N (0.2,0.052) 2.70 3.16 3.04

Table 1.1 Comparison of greedy and optimal allocations. k denotes mean degree, ‘Utility w/o net-
work’ is the utility when allocations are made without considering the social network, i.e., using
the maximum weight matching approach described in Section 1.3, but the utility is calculated using
Equation 1.3; ‘Opt Utility’ is calculated by finding the allocation which maximizes Equation 1.3;
Greedy allocates tasks using the algorithm described earlier (utility is again calculated using Equa-
tion 1.3). Two key observations are that: (1) Not considering the network structure in allocation is
significantly suboptimal; (2) The greedy allocation yields almost optimal performance.

Real World Networks: For the rest of this paper we use the term Utility Ratio
(UR) as the ratio of the utility achieved using the greedy algorithm and the util-
ity achieved by optimizing the allocation without considering the network effect
(although of course the network effect is taken into account in computing the ac-
tual utility). Table 1.2 shows that the possible gains from smarter task allocation
strategies really become evident when we look at larger organizations. Again note
that while the percentage gain from considering network structure in allocation is
roughly equivalent for the three types of networks, the overall utility tends to be
higher for small world networks especially.

Network Type (k) β (Randomness) Pr (Success) Utility w/o network Greedy UR
SWN 96 0.25 0.2 154.6 192.0 1.24
SWN 96 0.00 0.2 155.0 191.9 1.23
PAN 96 - 0.2 152.0 185.8 1.22
RGN 96 - 0.2 155.1 189.8 1.22

Table 1.2 For medium-size organizations: Experimental results when 480 experts are assigned to
48 projects, each with 10 tasks. “UR” represents utility ratio.

Effects of Team Size and Connectivity: Figure 1.2 shows benefits achieved by
considering network effects as a function of team size and of connectivity for ran-
dom graph networks. The benefit diminishes with increasing team size if the con-
nectivity of the social network remains constant. This is because the chances of
having a socially synergistic expert in a large team even with a random allocation
(or one that doesn’t take network structure into account) is higher than it would be
if teams were small. For connectivity, the utility ratio initially increases because of
the increase in socially synergistic experts assigned to the same project, but later
decreases as connectivity increases. Again, this decrease is because as connectivity
increases, socially synergistic experts are more likely to work on the same project
even if network structure is not explicitly a factor in the allocation. We experimented
with other types of networks as well but the observations were similar, so we do not
report them here for the sake of brevity.
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Fig. 1.2 As the team size increases, the likelihood of an expert having a neighbor in his/her team
also increases in any allocation; therefore, the utility ratio decreases with the increase in team size.
As the average connectivity increases, initially the utility ratio increases because there are more
experts available who can boost a given expert’s productivity; however, it later decreases. Again,
this is because the likelihood of having an expert’s neighbors working on the same project by
chance also increases in any allocation strategy.

1.5 Conclusions

Our results demonstrate the value of considering social network structure in alloca-
tion of tasks in networks of experts. We have also characterized situations in terms
of graph structure, connectivity, and team size, in which organizations may find it
particularly valuable to explicitly take social network structure into account in de-
termining the allocation of experts to tasks.
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